Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 199
1.
J Pharm Pharmacol ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38733634

The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.

2.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38695876

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Anorexia , Doxorubicin , Endoribonucleases , Growth Differentiation Factor 15 , Liver , Protein Serine-Threonine Kinases , Signal Transduction , Unfolded Protein Response , Weight Loss , X-Box Binding Protein 1 , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Anorexia/metabolism , Anorexia/chemically induced , Weight Loss/drug effects , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice , Unfolded Protein Response/drug effects , Doxorubicin/adverse effects , Cisplatin/adverse effects , Mice, Inbred C57BL , Antineoplastic Agents/adverse effects , Male , Humans
3.
Antioxidants (Basel) ; 13(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38671842

Under normal physiological conditions, reactive oxygen species (ROS) are produced through redox reactions as byproducts of respiratory and metabolic activities. However, due to various endogenous and exogenous factors, the body may produce excessive ROS, which leads to oxidative stress (OS). Numerous studies have shown that OS causes a variety of pathological changes in cells, including mitochondrial dysfunction, DNA damage, telomere shortening, lipid peroxidation, and protein oxidative modification, all of which can trigger apoptosis and senescence. OS also induces a variety of aging-related diseases, such as retinal disease, neurodegenerative disease, osteoarthritis, cardiovascular diseases, cancer, ovarian disease, and prostate disease. In this review, we aim to introduce the multiple internal and external triggers that mediate ROS levels in rodents and humans as well as the relationship between OS, aging, and aging-related diseases. Finally, we present a statistical analysis of effective antioxidant measures currently being developed and applied in the field of aging research.

4.
Small Methods ; : e2301334, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528378

The 2D materials exhibit numerous technological applications, but their scalable production is a core challenge. Herein, ball milling exfoliation in supercritical carbon dioxide (scCO2) and polystyrene (PS) is demonstrated to completely exfoliate hexagonal boron nitride nanosheets (BNNSs), graphene, molybdenum disulfide (MoS2), and tungsten disulfide (WS2). The exfoliation yield of 91%, 93%, 92%, and 92% and average aspect ratios of 743, 565, 564, and 502 for BNNSs, graphene, MoS2, and WS2, respectively, are achieved. Integrating exfoliated BNNSS in the polystyrene matrix, 3768 % thermal conductivity in the axial direction and 316% in the cross-plane direction at 12 wt.% loading is increased. Also, the in-plane and cross-plane electrical conductivity of 6.3 × 10-4 S m-1 and 6.6 × 10-3 S m-1, respectively, and the electromagnetic interference (EMI) of 63.3 dB is achieved by exfoliated graphene nanosheets based composite. High thermal and electrical conductivities and EMI shielding are attributed to the high aspect ratio and ultrathin morphology of the exfoliated nanosheets, which exert high charge mobility and form better the percolation network in the composite films due to their high surface area. The process demonstrate herein can produce substantial quantities of diverse 2D nanosheets for widespread commercial utilization.

5.
J Trace Elem Med Biol ; 83: 127420, 2024 May.
Article En | MEDLINE | ID: mdl-38432121

BACKGROUND: Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS: Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS: We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS: Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.


Antioxidants , Selenium , Child , Humans , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Selenium/pharmacology , Selenium/metabolism , Lead/metabolism , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/pharmacology , Weaning , Oxidative Stress , Glutathione/metabolism , Epithelial Cells , Kidney/metabolism , RNA, Small Interfering/metabolism
6.
BMC Public Health ; 24(1): 869, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515090

BACKGROUND: Given the growing evidence on the health benefits associated with physical literacy (PL), it is necessary to develop sound measures to assess the levels of PL in children. The Physical Literacy in Children Questionnaire (PL-C Quest) is the first self-report pictorial-based scale to assess children's perceived PL. It has good validity and reliability in Australian children aged 7 to 12 years, but little is known in younger children and in other cultural contexts. The aim of this study was to examine the validity and reliability in an expanded age range. METHODS: A total of 1,870 Chinese children (girls, n = 871; 46.6%), aged 4 to 12 years (M = 8.07 ± 2.42) participated in validity testing. Structural equation modeling with the Weighted Least Squares with Mean and Variance approach was used to assess construct validity. The hypothesized theoretical model used the 30 items and four hypothesized factors: physical, psychological, social and cognitive capabilities. Multigroup confirmatory factor analysis was used to assess sex and age group (4-6 years, 7-9 years and 10-12 years) measurement invariance. Internal consistency analyses were conducted using polychoric alpha. A random subsample (n = 262) was selected to determine test-retest reliability using Intra-Class Correlations (ICC). RESULTS: All items except one (moving with equipment-skateboarding) loaded on sub-domains with λ > 0.45. The hypothesized model had a good fit (CFI = 0.954, TLI = 0.950, RMSEA = 0.042), with measurement equivalence across sex and age groups separately. Internal consistency values were good to excellent (overall: α = 0.94; physical: α = 0.86; psychological: α = 0.83; social: α = 0.81; cognitive: α = 0.86). Test-retest reliability was adequate to excellent (overall: ICC = 0.90, physical: ICC = 0.86, psychological: ICC = 0.75, social: ICC = 0.71, cognitive: ICC = 0.72). CONCLUSION: The Chinese version of the PL-C Quest is valid and reliable for testing the self-reported PL of Chinese children aged 4 to 12. This study provides the first evidence of validity for this tool in children aged 4-6 years and also evidence that the PL-C Quest would be a meaningful instrument to assess PL in Chinese children.


Literacy , Child , Female , Humans , Australia , Psychometrics , Reproducibility of Results , Self Report , Surveys and Questionnaires , Male , Child, Preschool
7.
J Adv Res ; 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38432393

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

8.
Arthritis Res Ther ; 26(1): 11, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167214

BACKGROUND: The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS: Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS: Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS: To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.


Arthritis, Experimental , Arthritis, Rheumatoid , Eleutherococcus , Mice , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Eleutherococcus/metabolism , Interleukin-6 , Arthritis, Rheumatoid/metabolism , Disease Models, Animal , Cytokines/metabolism
9.
Front Aging Neurosci ; 16: 1332845, 2024.
Article En | MEDLINE | ID: mdl-38292341

Background: Currently, the prevalence of Alzheimer's disease (AD) is progressively rising, particularly in developed nations. There is an escalating focus on the onset and progression of AD. A mounting body of research indicates that epigenetics significantly contributes to AD and holds substantial promise as a novel therapeutic target for its treatment. Objective: The objective of this article is to present the AD areas of research interest, comprehend the contextual framework of the subject research, and investigate the prospective direction for future research development. Methods: ln Web of Science Core Collection (WOSCC), we searched documents by specific subject terms and their corresponding free words. VOSviewer, CiteSpace and Scimago Graphica were used to perform statistical analysis on measurement metrics such as the number of published papers, national cooperative networks, publishing countries, institutions, authors, co-cited journals, keywords, and visualize networks of related content elements. Results: We selected 1,530 articles from WOSCC from January 2013 to June 2023 about epigenetics of AD. Based on visual analysis, we could get that China and United States were the countries with the most research in this field. Bennett DA was the most contributed and prestigious scientist. The top 3 cited journals were Journal of Alzheimer's Disease, Neurobiology of Aging and Molecular Neurobiology. According to the analysis of keywords and the frequency of citations, ncRNAs, transcription factor, genome, histone modification, blood DNA methylation, acetylation, biomarkers were hot research directions in AD today. Conclusion: According to bibliometric analysis, epigenetic research in AD was a promising research direction, and epigenetics had the potential to be used as AD biomarkers and therapeutic targets.

10.
Chin Med J (Engl) ; 137(1): 97-104, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38073306

BACKGROUND: The Global Leadership Initiative on Malnutrition (GLIM) criteria were published to build a global consensus on nutritional diagnosis. Reduced muscle mass is a phenotypic criterion with strong evidence to support its inclusion in the GLIM consensus criteria. However, there is no consensus regarding how to accurately measure and define reduced muscle mass in clinical settings. This study aimed to investigate the optimal reference values of skeletal muscle mass index for diagnosing sarcopenia and GLIM-defined malnutrition, as well as the prevalence of GLIM-defined malnutrition in hospitalized cirrhotic patients. METHODS: This retrospective study was conducted on 1002 adult patients with liver cirrhosis between January 1, 2018, and February 28, 2022, at Beijing You-An Hospital, Capital Medical University. Adult patients with a clinical diagnosis of liver cirrhosis and who underwent an abdominal computed tomography (CT) examination during hospitalization were included in the study. These patients were randomly divided into a modeling group (cohort 1, 667 patients) and a validation group (cohort 2, 335 patients). In cohort 1, optimal cut-off values of skeletal muscle index at the third lumbar skeletal muscle index (L3-SMI) were determined using receiver operating characteristic analyses against in-hospital mortality in different gender groups. Next, patients in cohort 2 were screened for nutritional risk using the Nutritional Risk Screening 2002 (NRS-2002), and malnutrition was diagnosed by GLIM criteria. Additionally, the reference values of reduced muscle mass in GLIM criteria were derived from the L3-SMI values from cohort 1. Multivariate logistic regression analysis was used to analyze the association between GLIM-defined malnutrition and clinical outcomes. RESULTS: The optimal cut-off values of L3-SMI were 39.50 cm 2 /m 2 for male patients and 33.06 cm 2 /m 2 for female patients. Based on the cut-off values, 31.63% (68/215) of the male patients and 23.3% (28/120) of the female patients had CT-determined sarcopenia in cohort 2. The prevalence of GLIM-defined malnutrition in cirrhotic patients was 34.3% (115/335) and GLIM-defined malnutrition was an independent risk factor for in-hospital mortality in patients with liver cirrhosis ( Wald = 6.347, P  = 0.012). CONCLUSIONS: This study provided reference values for skeletal muscle mass index and the prevalence of GLIM-defined malnutrition in hospitalized patients with liver cirrhosis. These reference values will contribute to applying the GLIM criteria in cirrhotic patients.


Malnutrition , Sarcopenia , Adult , Female , Humans , Male , Leadership , Liver Cirrhosis , Malnutrition/diagnosis , Nutritional Status , Retrospective Studies , Sarcopenia/diagnosis
11.
Pharmacol Res ; 199: 107029, 2024 Jan.
Article En | MEDLINE | ID: mdl-38056513

Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.


Aortic Dissection , Proteome , Mice , Animals , Humans , Calcium-Binding Proteins , Proteomics , Calgranulin A/metabolism , Calgranulin B/metabolism , Disease Models, Animal , Aortic Dissection/drug therapy
12.
Water Environ Res ; 95(12): e10948, 2023 Dec.
Article En | MEDLINE | ID: mdl-38062884

A notable level of apprehension exists over the adverse impacts of dye pollution on aquatic ecosystems and human well-being. The primary objective of this research is to assess the effectiveness of Fenton catalytic reactions in degrading 14 different commercial azo dyes (both single and double) present in aqueous solutions. The investigation focused on the function of dye structures, using a combination of experimental data and examination of theoretical factors. Dye degradation process was carried out at pH 3, and the concentrations of Fe2+ (10-4 mol/L), H2 O2 (2 × 10-3 mol/L), and dye (0.05 g/L). The findings revealed that dyes with a larger molecular weight were more effective at degrading (D%), with the overall degradation efficiency varying from 0% to 94%. Functional groups played an important role in degradation efficiency; for example, dyes with higher aromatic rings led to less D%, while a higher number of sulfonic, methyl, and nitro groups was responsible for better D%. Notably, the presence of OH groups in the backbone of dyes (AB 24, ABE 113, and MB 9) formed the Fe complex during the catalytic process, and the D% was minimal. On the other hand, theoretical quantum calculations such as the greater the JCLogP, highest occupied molecular orbital, and Dipole moment value, the higher the degradation efficiency. And dyes with low lowest unoccupied molecular orbital tended to have a better degradation efficiency. To some extent, UV-Vis spectral analysis was investigated to determine the degradation pathway, and the pseudo-second-order kinetic model fitted better in the degradation process. The overall experimental and theoretical findings suggested that dye degradation efficiency by the Fenton process is structure-dependent. PRACTITIONER POINTS: Insights into the role of azo dye structures-properties on degradation efficiency. Higher molecular weight and sulfonic groups containing dyes showed better degradation efficiency. Hydroxyl groups play the formation of the Fe complex during the degradation process. Higher values of HOMO and lower values of LUMO enhanced degradation efficiency. The pseudo-second-order (PSO) kinetic model obeyed the Fenton process.


Coloring Agents , Wastewater , Humans , Coloring Agents/chemistry , Iron/chemistry , Ecosystem , Hydrogen Peroxide/chemistry , Azo Compounds/chemistry
13.
Pak J Med Sci ; 39(6): 1589-1594, 2023.
Article En | MEDLINE | ID: mdl-37936772

Objective: To explore the Shunt rate of ductus arteriosus (DA) and ductus venosus (DV) in middle and late fetuses and their application value in the evaluation of fetal growth restriction (FGR). Methods: In this retrospective observational study, we reviewed the clinical data of the patients who admitted to the Second Affiliated Hospital of Wenzhou Medical University from September 10, 2017 to November 27, 2018, and finally included 44 normal women at 28-31 weeks of pregnancy (Normal group) and 15 pregnant women with fetal growth restriction (FGR) within 28-31 weeks of gestation (FGR group). We measured blood flows of the DA (QDA), pulmonary artery (QPA), DV (QDV), and umbilical vein (QUV) and the shunt rates of the DA and DV (QDA/QPA and QDV/QUV, respectively) in all fetuses. We compared the mean variables between groups using the Normal group means as the normal reference values for analysis. Results: DA shunt rate was linearly and positively correlated with gestational age (Y=1.455X+2.787; r=0.767, P<0.01), while the DV shunt rate was linearly and negatively correlated with gestational age (Y=-2.791X+126.885; r=0.761, P<0.01). The DA shunt rates (QDA/QPA) of fetuses in the normal were higher than those in the FGR groups, but the differences between the two groups were not statistically significant (P > 0.05). The DV shunt rates (QDV/QUV) of fetuses in the normal were significantly lower than those in the FGR groups (P < 0.05). The DV shunt rates in the FGR group were significantly higher than those in the normal group with differences being statistically significant at 30-30+6 and 31-31+6 gestational weeks (P < 0.05) The receiver operating characteristic curve (ROC curve) showed that the higher the shunt rate, the worse the birth outcome of a fetus with FGR. Conclusions: The DV shunt rate in middle- and late-stage fetuses can predict the fetal birth outcome, and the higher the shunt ratio, the worse the birth outcome of FGR fetuses.

15.
Front Cell Infect Microbiol ; 13: 1227063, 2023.
Article En | MEDLINE | ID: mdl-37692162

The emergence of carbapenemase-producing Acinetobacter spp. has been widely reported and become a global threat. However, carbapenem-resistant A. johnsonii strains are relatively rare and without comprehensive genetic structure analysis, especially for isolates collected from human specimen. Here, one A. johnsonii AYTCM strain, co-producing NDM-1, OXA-58, and PER-1 enzymes, was isolated from sputum in China in 2018. Antimicrobial susceptibility testing showed that it was resistant to meropenem, imipenem, ceftazidime, ciprofloxacin, and cefoperazone/sulbactam. Whole-genome sequencing and bioinformatic analysis revealed that it possessed 11 plasmids. bla OXA-58 and bla PER-1 genes were located in the pAYTCM-1 plasmid. Especially, a complex class 1 integron consisted of a 5' conserved segment (5' CS) and 3' CS, which was found to carry sul1, arr-3, qnrVC6, and bla PER-1 cassettes. Moreover, the bla NDM-1 gene was located in 41,087 conjugative plasmids and was quite stable even after 70 passages under antibiotics-free conditions. In addition, six prophage regions were identified. Tracking of closely related plasmids in the public database showed that pAYTCM-1 was similar to pXBB1-9, pOXA23_010062, pOXA58_010030, and pAcsw19-2 plasmids, which were collected from the strains of sewage in China. Concerning the pAYTCM-3 plasmids, results showed that strains were collected from different sources and their hosts were isolated from various countries, such as China, USA, Japan, Brazil, and Mexico, suggesting that a wide spread occurred all over the world. In conclusion, early surveillance is warranted to avoid the extensive spread of this high-risk clone in the healthcare setting.


Acinetobacter , Carbapenems , Humans , Carbapenems/pharmacology , Genes, Regulator , Transcription Factors , Acinetobacter/genetics
16.
ACS Appl Mater Interfaces ; 15(38): 45526-45535, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37708401

Currently, there is a limited amount of research on PEDOT:LS (poly(3,4-ethylenedioxythiophene):sulfonated lignin)-based hydrogels. While the addition of PEDOT:LS can enhance the conductivity of the gel, it unavoidably disrupts the gel network and negatively affects its mechanical properties. The preparation process and freezing resistance of the hydrogels also pose significant challenges for their practical applications. In this study, we have developed a novel self-catalytic system, PEDOT:LS-Fe3+, for the rapid fabrication of conductive hydrogels. These hydrogels are further transformed into eutectogels by immersing them in a deep eutectic solvent. Compared with conventional hydrogels, the eutectogels exhibit improved elongation, mechanical strength, and resistance to freezing. Specifically, the eutectogels containing 2 wt % PEDOT:LS as conductive fillers and catalysts demonstrate exceptional stretchability (∼460%), self-adhesion (∼14.6 kPa on paper), UV-blocking capability (∼99.9%), and ionic conductivity (∼1.2 mS cm-1) even at extremely low temperatures (-60 °C). Moreover, the eutectogels exhibit high stability and sensitivity in flexible sensing, successfully detecting various human motions. This study presents a novel approach for the rapid preparation of the hydrogels by utilizing lignin in the conductive PEDOT polymerization process and forming a self-catalytic system with metal ions. These advancements make the eutectogels a promising candidate material for flexible wearable electronics.

17.
Nano Lett ; 23(18): 8560-8567, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37676859

Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact. Specifically, PO-T2T firmly bonds on the perovskite's surface and grain boundaries through a dative bond, effectively passivating the uncoordinated lead defects. Additionally, PO-T2T has high electron mobility and establishes an electron transport highway to bridge the ETL and EML. As a result, a maximum external quantum efficiency (EQEmax) of 22.06% (average EQEmax of 20.02 ± 1.00%) and maximum luminance (Lmax) of 103286 cd m-2 have been achieved for the champion device. Our results indicate that EML/ETL interface modifications are crucial for the fabrication of highly efficient Pero-LEDs.

18.
Sci Rep ; 13(1): 13460, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37596393

There has been a lot of attention on water pollution by dyes in recent years because of their serious toxicological implications on human health and the environment. Therefore, the current study presented a novel polyethylene glycol-functionalized graphene oxide/chitosan composite (PEG-GO/CS) to remove dyes from aqueous solutions. Several characterization techniques, such as SEM, TEM, FTIR, TGA/DTG, XRD, and XPS, were employed to correlate the structure-property relationship between the adsorption performance and PEG-GO/CS composites. Taguchi's (L25) approach was used to optimize the batch adsorption process variables [pH, contact time, adsorbent dose, and initial concentration of methyl orange (MO)] for maximal adsorption capacity. pH = 2, contact time = 90 min, adsorbent dose = 10 mg/10 mL, and MO initial concentration = 200 mg/L were found to be optimal. The material has a maximum adsorption capacity of 271 mg/g for MO at room temperature. With the greatest R2 = 0.8930 values, the Langmuir isotherm model was shown to be the most appropriate. Compared to the pseudo-first-order model (R2 = 0.9685), the pseudo-second-order model (R2 = 0.9707) better fits the kinetic data. Electrostatic interactions were the dominant mechanism underlying MO sorption onto the PEG/GO-CS composite. The as-synthesized composite was reusable for up to three adsorption cycles. Thus, the PEG/GO-CS composite fabricated through a simple procedure may remove MO and other similar organic dyes in real contaminated water.

19.
J Med Chem ; 66(16): 11324-11334, 2023 08 24.
Article En | MEDLINE | ID: mdl-37534604

Oxidative stress plays a critical role in drug-induced liver injury. In recent years, liquiritigenin (LQ), a natural flavonoid distributed in Glycyrrhizae Radix et Rhizoma (Gan Cao), shows protective effects against oxidative hepatotoxicity. However, the underlying mechanism remains unclear. In this study, we mainly investigated the role of NRF2, a core transcription factor in oxidative stress, in LQ-induced hepatoprotection. Our results indicated that the function of LQ to eliminate reactive oxygen species in liver cells was dependent on NRF2 activation. Both a canonical signaling pathway and a non-canonical signaling pathway are involved in LQ-induced NRF2 activation. LQ induced NRF2 activation in a KEAP1-C151-dependent manner partially. Meanwhile, LQ led to the blockage of autophagic flux and upregulation of p62, which competitively bound with KEAP1 and conferred NRF2 activation in a KEAP1-C151-independent manner. Totally, our study reveals a novel molecular mechanism underlying the hepatoprotection of LQ, providing a new insight into the pathogenesis and therapeutic strategy of oxidative liver injury.


Liver , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line , Signal Transduction , Oxidative Stress
20.
Sci Rep ; 13(1): 9679, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37322139

Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.


Nanofibers , Least-Squares Analysis , Machine Learning , Computer Simulation , Membranes
...